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Abstract—The paper investigates the reduction of dynamic
power for streaming applications yielded by asynchronous
dataflow designs by using clock gating techniques. Streaming ap-
plications constitute a very broad class of computing algorithms
in areas such as signal processing, digital media coding, cryptog-
raphy, video analytics, network routing and packet processing
and many others. The paper introduces a set of techniques that,
considering the dynamic streaming behavior of algorithms, can
achieve power savings by selectively switching off parts of the
circuits when they are temporarily inactive. The techniques being
independent from the semantic of the application can be applied
to any application and can be integrated into the synthesis stage
of a high-level dataflow design flow. Experimental results of at-
size applications synthesized on FPGAs platforms demonstrate
power reductions achievable with no loss in data throughput.

I. INTRODUCTION

Power dissipation is currently the major limitation of silicon
computing devices. Reducing power has also other beneficial
effects, it implies less stringent needs for cooling, improved
longevity, longer autonomy in the case of battery operated
devices and obviously, lower power costs. For all these reasons
power also frequently affects the choice of the computing
platform right at the outset. For example, Field-Programmable
Gate Arrays (FPGAs) imply higher power dissipation per
logic unit when compared to equivalent Application-Specific
Integrated Circuit (ASIC), but often compare favorably to
conventional processors used for the same functional tasks.

For any silicon device, power dissipation can be partitioned
into two components: a static and a dynamic component. Static
power dissipation, also referred to as quiescent or standby
power consumption, is the result of the leakage current of
the transistors, also affected by the ambient temperature. By
contrast, dynamic power dissipation is caused by transistors
being switched and by losses of charges being moved along
wires. Power dissipation increases linearly with frequency, due
largely to the influence of parasitic capacitances. To counteract
this effect, ASIC designers have employed clock gating (CG)
techniques in the last twenty years [1], [2], [3].

Different strategies for optimizing power consumption on
ASICs and FPGAs are discussed in Section II. These papers
describe the impact of a chosen technology for a given
architecture, but do not describe how to reduce power at
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oratory SCI-STI-MM of École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland e-mail: (endri.bezati@epfl.ch)

Jorn W. Janneck is with Departement of Computer Science, Lund Univer-
sity, Sweden

Manuscript received April 19, 2014

the design abstraction level. As a consequence, adding power
controllers at the behavioral description design stage con-
stitutes an additional task that has to be carried-out with
care to avoid introducing undesired application behaviors
and might reduce the portability of the code (i.e platform
is changed during the development process). In addition, it
is extremely difficult for HLSs approaches that are based
on Imperative Model of Computations (MoCs) [4] to apply
power optimization solutions that can be yielded by automatic
tools starting from the (imperative) behavioral description.
Conversely, dynamic dataflow [5], [6], [7] designs such as
for instance the ones expressible using the formal RVC-CAL
language possess interesting properties that can be exploited
for reducing the power consumption without affecting, by
construction, the behavioral characteristics of the application.
In RVC-CAL, every actor can concurrently execute processing
tasks, executions might be disabled by input blocking reads,
and every communications among actors can occur only by
means of order preserving lossless queues. As a consequence,
an actor may be stopped for a certain period if its processing
tasks are idle or its outputs queues (buffers) are full without
impacting the overall throughput and semantical behavior of
the design. In addition, to higher levels of dynamic behaviors
that might be present in a given dataflow design, correspond
higher levels of power reduction opportunities. This is not the
case for synchronous dataflow designs that always consume
and produce a fixed amount of data tokens. Thus, synchronous
dataflow design always dissipate a constant amount of power
compared to asynchronous dataflow. In this perspective the
techniques that transform intrinsically dynamic algorithm into
static versions such as the ones that are implemented by static
dataflow MoC for deriving analytical guaranteed bounds or
other analyzability purposes. In general this transformations
are done by introducing dummy tokens guaranteeing constant
rates. Thus, in terms of power optimization such approaches
are inefficient.

This paper is organized as follows: in Section II previous
works on clock-gating are briefly introduced. Section III de-
scribes in details the clock-gating strategy and how it is applied
on a dataflow design. In Section IV experimental results are
presented and conclusions are finally drawn in Section V.

II. RELATED WORK

Globally Asynchronous Locally Synchronous (GALS)
based systems consist of several locally synchronous com-
ponents which communicate with each other asynchronously.
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Works on GALS can be separated into three categories: parti-
tioning, communication devices, and dedicated architectures.
Dataflow design modeling, exploration, and optimization for
GALS-based designs has been studied previously by sev-
eral authors. Shen et al. [8] proposed a design and evalua-
tion framework for modeling application-specific GALS-based
dataflow architectures for cyclo-static applications, where sys-
tem performance, e.g. throughput, is taken into account during
optimization. Similarly, Wuu et al. [9] and Ghavami et al. [10]
proposed a method for automatic synthesis of asynchronous
digital systems. These two approaches were developed for
fine-grained dataflow graphs, where actors are primitives or
combinational functions. Related to our work, authors in [11]
proposed a multiple clock, domain-design methodology for
reducing the power consumption of dataflow programs. Their
design objective was to optimize the mapping of an application
while still meeting design performance requirements. This
optimization was achieved by assigning each clock domain
an optimized clock frequency to reduce power consumption.

III. CLOCK-GATING STRATEGY

Current FPGA families support different clock gating strate-
gies and each manufacturer provides its own IP for manag-
ing these different approaches. The methodology described
here is based on using primitives specific to Xilinx FPGA
architectures. However, this methodology can be modified to
support other FPGA vendors primitives. In the remainder of
this section, it is briefly described how clock gating techniques
are implemented on Xilinx FPGAs and how an automatic
clock gating strategy within Xronos HLS is realized.

A. Profile guided buffer size

The execution of a dataflow program consists of a sequence
of action firings. These firings can be correlated to each
other in a graph-based representation using an approach called
Execution Trace Graphing (ETG). The graph is an acyclic
directed graph where each node represents an action firing, and
a directed arc represents either a data or a control dependency
between two different action firings. The effectiveness of
analyzing a dataflow program using an ETG is demonstrated
in [12]. Xronos provides profiling for each firing execution
in clock cycles. This is achieved by retrieving the difference
of DONE and GO signals for each action firing during RTL
simulation [13]. Timing information is added to the ETG
for each firing and each dependency arises according to a
corresponding time value, thus transforming the ETG into
a weighted graph. A close-to-optimal buffer size configura-
tion, in terms of execution throughput and buffer memory
utilization, can be obtained through an iterative analysis of
the algorithmic critical path evaluated using the weighted
ETG. For a detailed description the interested reader can refer
to [14].

B. Coarse-grained clock gating strategy

When the output buffer of any actor is full, the clock of this
actor should be turned off as the actor is idle. This is because

switching off its clock will not have an impact on design
throughput. Even though RVC-CAL dataflow designs are used
for the behavioral description, such clock gating strategy is
more general and can be applied to systems that represent the
execution of a process that communicates with asynchronous
FIFO buffers. The queues should be asynchronous for lossless
communication when an actor is clock gated and a design has
differing input clock domains.
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Fig. 1: Clock gating methodology applied for Actor A. The
actor A has two outputs one of those have a fanout of two. The
Clock enabling circuit takes the Almost Full and Full signal of
each queue and a clock from a clock domain and as a result
it is going to activate or deactivate the clock of Actor A.

This strategy consists of adding a Clock Enabler circuit for
activating the Actors’ clock. This circuit contains: a controller
for each output port queue of each actor, a combinatorial logic
for the configuration of the output ports, and a clock buffer
(which enables the clock). A representation of an actor with a
single output port being clock gated is illustrated in Figure 1.
As depicted, queues are asynchronous. Queues have two input
clocks: one for consuming tokens and one for producing them.
Additionally, queues have two output ports: AF for almost
full, and F for full. The actors input clock is connected to the
output of the Clock Enabler circuit. Finally, the clock buffer
BUFGCE input clock should be connected with a Flip-Flop
for glitch-free clock gating [15].

The Flip-Flop will introduce a one-clock latency when the
clock is switched off, but this additional clock cycle will not
have an impact on actors that are on the critical path. Those
actors are not being clock gated because the TURNUS dimen-
sioning of the FIFO queues is based on critical path analysis.
Hence, this approach does not impact overall performance.
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Fig. 2: State machine of the clock enabling controller. The
controller has two inputs, F for full, AF for almost full and
one output en as the enable signal.

Clock enabling controller: The clock enabling controller
is represented in Figure 2. The controller is implemented as
a finite state machine having a clock; a reset; input F, for



0278-0070 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2016.2597215, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2015 3

full; input AF, for almost full; and output EN, for enable. The
AF input becomes active high when there is only one space
left on its FIFO Queue. Its finite state machine (FSM) has 5
states S = {INIT, SPACE,AFULL DISABLE,FULL,
AFULL ENABLE}. The controller starts with the INIT
state and maintains the EN output port at active high until F
and AF become active low.

The active high EN is maintained during the SPACE
state. As a queue becomes full, the state changes to
AFULL DISABLE. In this state, the EN output passes to
an active low. A conservative approach is taken in this state
as the BUFGCE disables the output clock on the high-to-
low edge. The clock enables entering the BUFGCE should
be synchronized to the input clock. Once the queue becomes
full, the controller maintains the EN at active low. When a
token is consumed from the queue, the controller passes to the
AFULL ENABLE state, and it activates the clock. Then,
depending on whether the buffer becomes full or almost full,
the state changes to either the FULL or the SPACE state.

Strategy: The user can choose a mapping configuration
that indicates which actor should be clock gated. To do so, an
attribute is given to each actor. If an actor has been selected
for clock gating, all of its output FIFO queues, A and AF,
are connected to a clock enabler controller. Output queues
can be connected through a fanout or directly to a queue. In
the first case, the controller results are connected to an AND
logic port. This is a safe approach in the case that one of the
queues in the fanout is full. In this case, the fanout should
command the actor not to produce a token. For the latter case,
if an actor’s output is connected directly to a queue without
a fanout, the result should be connected to an OR logic port
as the next actor may need to consume a certain number of
tokens to output a token. This may lead the system to lock
due to the unavailability of data. In the third case, if there
is a combination of outputs with or without a fanout, then
an n-input OR logic port is inserted. Figure 3 depicts these
configurations.

A pseudo-template of the clock Enabler circuit is given
in Template 1. This template generates a Verilog file that
takes into account the different cases described previously.
These situations are detected and generated automatically as
described in the ”Always Clause”. A flip-flop (created by the
always clause) is connected between the BUFGCE and the
final OR or AND port. Thus, clock glitches are eliminated and
the clock enabling is runt free. The last output of the clock
gating is a new clock that is connected to the actors, its fanouts,
and its queues’ write and read clocks (CLK W and CLK R,
respectively) as visualized in Figure 1.

IV. EXPERIMENTAL RESULTS

In this section, the power reduction gain of the aforemen-
tioned methodology is evaluated by applying it to a video
decoder design. In [16], the reader can find a variety of
RVC-CAL applications for dataflow programs. One of these
applications is the Intra MPEG 4 simple profile decoder. Due
to restrictions on the number of clock buffers in Xilinx FPGAs,
the design selected was refactored to result in 32 actors.

Template 1: Clock Enabler circuit module creation
module clock enabler
Input : actor
Input : enable
Input : clk in
Input : reset
Input : ∀P out

almost full

Input : ∀P out
full

Output: clk out
for p in ∀P out do

wire [”sizeof(p.fanout)”:0] ”nameof(p)” enable;
reg clock enable;
wire buf enable;
for p in ∀P out do

for idx in sizeof(p.fanout) do
controller c ”nameof(p)” ”idx”(
.almost full(”nameof(p)” almost full[”idx”])
.full(”port.name” full[”idx”]),
.enable(”port.name” enable[”idx”]),
.clk(clk),
.reset(reset));

always @(posedge clk) being
clock enable <= for p ∀P out SEPARATOR ”—” do

if sizeof(p.fanout) > 1 then
for idx in sizeof(p.fanout) SEPARATOR ”&” do

nameof(p) enable[”idx”]
else

nameof(p) enable

assign buf enable = en ? clock enable : 1;
BUFGCE clock enabling (.I(clk), .CE(buf enable), .O(clk out));
endmodule

Test Design: The Intra MPEG-4 SP description contains
32 actors and it is 4:2:0 decoder which is separated into 8
processing blocks: four components for luminance (Y) and
two each for chrominance (U and V)). The parser block
includes the syntactical bitstream parser and the variable length
decoding process which the Tex Y, U, and V blocks (for
texture) implements. The residual decoding (AC-DC predic-
tion, inverse scanning, inverse quantization, and IDCT) and
the MOT Y, U and V realize the motion compensation stage
(framebuffer, interpolation, and residual error addition). Due
to the nature of the experiments, the motion compensation
blocks contain only the residual error addition actor. By using
the TURNUS profiler, a close to minimum queue size [17] for
each queue in the decoder is determined.

Experimental Flow: For the experimental evaluation, a
Virtex 7 XC7VX485T-2 FPGA (VC707 Evaluation Kit) was
used. The HDL code of the decoder was generated by Xronos
and synthesized with the Xilinx XST synthesizer. Following
synthesis, placing and routing was applied to produce a
final netlist. This netlist was then simulated with Modelsim
to extract the switching activity information (SAIF file) of
the design. The Xilinx XPower analyser was then used to
determine power consumption, using the the design netlist,
the design constraints, and the simulation activity SAIF as
inputs. Also, all of the results given have a high confidence
level meaning that at least 97% of the design nets are found
within the SAIF file. Table I shows the synthesis results of
the Intra MPEG-4 simple profile decoder with and without
clock gating. This example demonstrates that the clock gated
decoder uses more slices than the non clock gated one. Even
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Fig. 3: Clock Enabler Circuit in three different configurations.

Logic Utilization Non Clock Gated Clock Gated Available
Slices 9214 12776 607200
LUTs 21499 25126 303600
BUFGCTRLs 1 32 32
BRAMs 7 7 1030
DSPs 18 18 2850
Max Freq. 109 109 -

TABLE I: Synthesis results of the Intra MPEG-4 simple profile
decoder synthesized for Virtex 7 XC7VX485T-2 FPGA, with
and without clock gating.

though this represents 28% more slices overall compared to
the non clock gated decoder, the clock gating methodology
requires only 15% more LUTs. A 50 MHz clock has been
given as a synthesis constraint.

Table II depicts the power consumption of the decoder
including the circuit of the clock gating methodology. Two test
cases where considered: clock gating de-activated and clock
gating activated when decoding at maximum throughput.

In Table II, the Actors Clocks label only the power consump-
tion of the clock nets of the actor. The Clocks cell contains
the Actors Clock nets, the enabling of clock buffer nets, and
the nominal 50Mhz clock net. As a a result of clock gating,
the Actors Clocks consume 26% less power, but due to the
decoder running at full speed, the activation rate of the Logic
and Signals nets remain resulting in a total power decrease of
4% (16 mW less).

Clock Gating Disabled (mW) Enabled (mW)
Actors clocks 58 43
Clocks 94 80
Logic 25 24
Signals 42 41
Leakage 242 242
Total 403 387

TABLE II: Power consumption of the Intra MPEG-4 SP
decoder when the clock gating is disabled/enabled.

A. Power saving efficiency over decoder throttling

As described in Table I the maximum decoder throughput
rate is 350 frames per second for a QCIF image (176x144
pixels). For the experiment, the decoder is throttled such that
it decodes only 30 images per second for two resolutions QCIF
and CIF (384x288 pixels).

Figure 5b reports the power consumption and the activation
rate for each actor’s clock (found on the Intra MPEG-4

simple profile decoder). The activation rate of the actor’s clock
demonstrates that some of them have an activation rate of
less than 10%. As a result of these activation rates, the power
consumption on clocks has drastically fallen by 53.7% for
the QCIF resolution and 47.6% for the CIF resolution. As for
overall power consumption, the decoder consumes 59mW less
for the QCIF resolution and 54mW less for the CIF resolution.
Furthermore, out of 31 actors, 15 are almost always on. This
means that for the 15 actors, their output buffers never fill
up. Further improvements of this methodology could entail
detecting which actors do not benefit from clock gating and
eliminating the instantiation of unnecessary additional logic.

B. Power saving efficiency over bandwidth demand

In this experiment, the decoder was throttled from 0% to
90% simulating a channel with differing consumption rates.
This is an example of clock gating applied not specifically
to video decoding applications, but to a general application.
Figure 4 represents the power consumption of the decoder
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Fig. 4: Power consumption of overall clocks, the signals, logic,
and the total dynamic power consumption of the Intra MPEG
4 SP decoder when its output is throttled from 0% to 90%.

when its output is throttled from 0% to 90%. As demonstrated,
the total dynamic power consumption has decreased from 145
mW to 106 mW, a power reduction of 27%. Compared to
the non clock gate decoder, the dynamic power have been
reduced by 34%. Figure 5 reports the power consumption of
each clock and their activation rate when throttled. From this
graph, the data of 15 actors has been removed due to their
activation rate being more than 99%. All actor clock activation
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(b) Actors clock activation rate.

Fig. 5: Power consumption and activation rate of each clock
gated actor clock of the MPEG-4 SP decoder. Median values
were retrieved from a MPEG-4 reference QCIF input stimuli
(video sequence).

rates decreased while increasing throttle (apart from two
cases, par splitter Qp clk and tex Y DCR addr clk where
the power consumption increased slightly). The decoder used
was YUV 420. When it reaches 60%, the decoder throttles
the luminance decoding, but the the chrominance decoding
remains active. This also occurred during a behavioral simu-
lation in Modelsim.

V. CONCLUSION

This paper presents a clock-gating methodology applied to
dataflow designs that can be automatically included in the
synthesis stage of a HLS design flow. The application of the
power saving technique is independent from the sematic of
application and does not need any additional step or effort
during the ”design” of the application at the dataflow program
level. The clock gating logic is generated during the synthesis
stage together with the synthesis of the computational kernels
connected via FIFO queues constituting the dataflow network.
Conceivably, these techniques could be extended to other
dataflow Methods of Computation.

Experimental results are very encouraging: savings in power
dissipation achieved with a slight increase in control logic
without any reduction in throughput have been achieved.
Unsurprisingly, clock gating is attractive in situations where
the design is not used to its full capacity. In these circum-
stances clock gating is a simple, automatic, and effective

way to recover power otherwise lost in ”idle” cycles. As a
result, this technique is particularly interesting in applications
with dynamically varying performance requirements, when
designing to a particular performance point is impossible, and
when power consumption is deemed costly.

Further investigations into clock gating should consider
more aggressive control logic, whereby control is given to
each individual actor, allowing greater flexibility to actor
inactivity. Furthermore, it will be necessary to develop tools
that partition complex applications onto the limited number
of clock domains for more efficient implementations. Lastly,
additional considerations could be given to controlling clock
speed and, possibly, voltage transitions.
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